Search results

1 – 10 of 25
Article
Publication date: 5 August 2022

Abdul Wahab, Jun Wang, Alireza Shojaei and Junfeng Ma

Smart contracts using blockchain technology (BCT) is a tool that decentralizes authority and makes it easier to upgrade the contract administration process by providing an…

Abstract

Purpose

Smart contracts using blockchain technology (BCT) is a tool that decentralizes authority and makes it easier to upgrade the contract administration process by providing an efficient system. Current literature provides a good overview of contracts in the construction industry; however, the specific details of BCT's smart contracts applications in the three categories have not been addressed adequately: (1) information quality, (2) enhancing project schedule and progress payment time and (3) reducing conflicts among project stakeholders. Thus, this study aims to analyze smart contracts using BCT by creating a computerized contract model, specifically evaluating its impact on the three identified categories.

Design/methodology/approach

In this paper BCT-SmContract was developed through an automated program that utilizes blockchain to define the contractual agreements between different parties in a construction project. BCT-SmContract model provides a new technique to overcome the current challenges associated with factors identified in this study, i.e. (1) information quality, (2) enhancing project schedule and progress payment time and (3) reducing conflicts among project stakeholders. Afterward, the model was tested to ensure validity and reliability through a construction project.

Findings

The findings indicated that BCT-SmContract was approximately 90% faster to execute the contract and 100% accurate in reflecting the correct information about the project status, resulting in reduced conflicts.

Originality/value

This study has contributed in upgrading the traditional contracting method in construction by developing an automated smart contract model to enhance the processes and achieve higher accuracy.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 November 2021

Guangyuan Wu, Haitao Zhang, Junfeng Sun and Tengjiang Yu

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation…

Abstract

Purpose

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt.

Design/methodology/approach

Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance.

Findings

The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area.

Originality/value

Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 November 2021

Noel Yee Man Siu, Tracy Junfeng Zhang and Ho Yan Kwan

By extending the expectancy-disconfirmation theory and integrating the elaboration likelihood model, this study aims to explore the reference effects (i.e. disconfirmation and…

1382

Abstract

Purpose

By extending the expectancy-disconfirmation theory and integrating the elaboration likelihood model, this study aims to explore the reference effects (i.e. disconfirmation and self-identity) and customer engagement that affect customer experience on satisfaction with a museum visit. The study is designed to test a dual-mediator mechanism involving disconfirmation and self-identity. The moderating role of cognitive, affective or behavioral engagements is also examined with the overall purpose to advance the understanding of customer experience in cultural consumption such as museum visits.

Design/methodology/approach

A self-administered field survey in two stages was carried out on visitors to the Hong Kong Museum of Art. A total of 465 valid response sets were used for analysis. Hypotheses were tested using confirmatory factor analysis, three-step mediation test, structural equation modeling and moderation regressions.

Findings

Disconfirmation and self-identity are found to be dual mediators in the experience–satisfaction relationship. Cognitive engagement reduces the effect of knowledge experience on disconfirmation and self-identity but increases that of the entertainment experience on disconfirmation and self-identity. Affective engagement amplifies the effect of knowledge experience on self-identity but mitigates the importance of entertainment evaluations.

Practical implications

Findings highlight the importance of both perceived knowledge and entertainment experiences in visitors’ evaluation of a cultural experience. Managers are suggested to craft promotional messages with the psychological appeal that connects visitors with museum services. Appropriate engagement tactics for museums can be developed to avoid overloading visitors with information.

Originality/value

Previous studies treat disconfirmation as the dominant reference effect in the formation of customer satisfaction. This study shows both disconfirmation and self-identity as dual reference effects that link the customer experience to satisfaction in the museum context, serving as a pioneer in defining how the influence of experience on reference effects varies depending on how customers are cognitively and affectively engaged in such context.

Details

International Journal of Contemporary Hospitality Management, vol. 34 no. 2
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 3 August 2022

Bin Zhao, Yawei Zhou, Junfeng Qu, Fei Yin, Shaoqing Yin, Yongwei Chang and Wu Zhang

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The…

Abstract

Purpose

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The CNTs have one-dimensional nanostructure, high surface adsorption capacity, good conductivity and electronic ballistic transmission characteristics and therefore have excellent mechanical, electrical, physical and chemical properties. CNTs are ideal basic materials to make nanometer gas sensors. Nanometallic materials function as to enhance electrode activity and promote the electron transfer, so if composite nanometallic materials M (such as Au, Pt, Cu and Pd) and CNTs are used, all kinds of their characters of components would have coeffect. Electrochemical sensors by use of such composite as electrode would have a higher detection sensitivity.

Design/methodology/approach

CNTs were synthesized via chemical vapor deposition technique and were purified afterward. CNTs-M(Pt,Au) suspension was prepared by chemical deposition using spinning disc processor (SDP) and was coated on gold electrode. The modified electrodes were constructed, based on immobilization of glucose oxidase on an Au electrode by electrostatic effect. CNTs-Pt/ glassy carbon electrodes (GCE) electrodes were made by electrochemically deposition of platinum particles on GCE modified by CNTs. The microstructures of the harvested CNTs, CNTs-M (M = Au, Pt) were analyzed under scanning electron microscopy and transmission electron microscopy. The application of the sensor in medical detection has been evaluated.

Findings

The results shown that CNTs-Au biosensors exhibit good reproducibility, stability and fast response to glucose detection, it can be used in the clinic detection of glucose concentration in human serum. Using CNTs-Pt/GCE for formaldehyde detection exhibited high sensitivity and good reproducibility.

Originality/value

This study modified CNTs by using self-assembled techniques through SDP with nano Pt and Au by electrodeposition for the first time. CNTs-Pt/GCE electrode was prepared by depositing platinum particles electrochemically on GCE modified by CNTs. CNTs-Au-modified electrode was prepared by immobilization of glucose oxidase on an Au electrode first by electrostatic effect. Electrochemical behaviors of glucose at CNTs-Au and formaldehyde at CNTs-Pt/GCE were investigated by cyclic voltammetry.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2016

Junfeng Jiao, Anne Vernez Moudon and Adam Drewnowski

The purpose of this paper is to ascertain how elements of the built environment may or may not influence the frequency of grocery shopping.

Abstract

Purpose

The purpose of this paper is to ascertain how elements of the built environment may or may not influence the frequency of grocery shopping.

Design/methodology/approach

Using data from the 2009 Seattle Obesity Study, the research investigated the effect of the urban built environment on grocery shopping travel frequency in the Seattle-King County area. Binary and ordered logit models served to estimate the impact of individual characteristics and built environments on grocery shopping travel frequency.

Findings

The results showed that the respondents’ attitude towards food, travel mode, and the network distance between homes and stores exerted the strongest influence on the travel frequency while urban form variables only had a modest influence. The study showed that frequent shoppers were more likely to use alternative transportation modes and shopped closer to their homes and infrequent shoppers tended to drive longer distances to their stores and spent more time and money per visit.

Practical implications

This research has implications for urban planners and policy makers as well as grocery retailers, as the seemingly disparate groups both have an interest in food shopping frequency.

Originality/value

Few studies in the planning or retail literature investigate the influence of the urban built environment and the insights from the planning field. This study uses GIS and a planning framework to provide information that is relevant for grocery retailers and those invested in food distribution.

Details

International Journal of Retail & Distribution Management, vol. 44 no. 9
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 5 May 2021

Pedram Parandoush, Palamandadige Fernando, Hao Zhang, Chang Ye, Junfeng Xiao, Meng Zhang and Dong Lin

Additively manufactured objects have layered structures, which means post processing is often required to achieve a desired surface finish. Furthermore, the additive nature of the…

Abstract

Purpose

Additively manufactured objects have layered structures, which means post processing is often required to achieve a desired surface finish. Furthermore, the additive nature of the process makes it less accurate than subtractive processes. Hence, additive manufacturing techniques could tremendously benefit from finishing processes to improve their geometric tolerance and surface finish.

Design/methodology/approach

Rotary ultrasonic machining (RUM) was chosen as a finishing operation for drilling additively manufactured carbon fiber reinforced polymer (CFRP) composites. Two distinct additive manufacturing methods of fused deposition modeling (FDM) and laser-assisted laminated object manufacturing (LA-LOM) were used to fabricate CFRP plates with continuous carbon fiber reinforcement. The influence of the feedrate, tool rotation speed and ultrasonic power of the RUM process parameters on the aforementioned quality characteristics revealed the feasibility of RUM process as a finishing operation for additive manufactured CFRP.

Findings

The quality of drilled holes in the CFRP plates fabricated via LA-LOM was supremely superior to the FDM counterparts with less pullout delamination, smoother surface and less burr formation. The strong interfacial bonding in LA-LOM proven to be superior to FDM was able to endure higher cutting force of the RUM process. The cutting force and cutting temperature overwhelmed the FDM parts and induced higher surface damage.

Originality/value

Overall, the present study demonstrates the feasibility of a hybrid additive and subtractive manufacturing method that could potentially reduce cost and waste of the CFRP production for industrial applications.

Article
Publication date: 14 April 2022

Guangyuan Wu, Haitao Zhang, Qixin Ge, Junfeng Sun and Tengjiang Yu

In order to determine the range of medium temperature zone of road asphalt, it is hoped that the evolution of viscoelastic characteristics of road asphalt under medium temperature…

Abstract

Purpose

In order to determine the range of medium temperature zone of road asphalt, it is hoped that the evolution of viscoelastic characteristics of road asphalt under medium temperature state can be deeply explored.

Design/methodology/approach

In this paper, the needle penetration test and temperature scanning test were designed for 90# and 70# bitumen as test materials, and the boundary of medium temperature zone of 90# and 70# bitumen was accurately determined by data analysis method. A mathematical model was established based on principal component analysis, and a comprehensive evaluation index was proposed to evaluate the evolution of temperature viscoelastic characteristics of road asphalt by means of standardization and rotational dimensionality reduction.

Findings

The test results show that the medium temperature zone of 90# asphalt is [−5 ± 1°C, 38 ± 1°C], and the medium temperature zone of 70# asphalt is [0 ± 1°C, 51 ± 1°C]. According to the viscoelastic response of road asphalt in the medium temperature zone, the medium temperature zone can be divided into three evolution stages: weak viscoelastic stage, viscoelastic equilibrium stage, strong viscoelastic weak stage. Analysis based on the intrinsic viscosity fillip target describing the various intrinsic viscoelastic index represents the viscoelastic properties of bitumen from different angles, and limitations inherent stick fillip for target put forward the integrated the inherent stick fillip mark information, as well as targeted and accurate evaluation of road asphalt temperature comprehensive evaluation indexes in the evolution of the viscoelastic properties of IM-T. Finally, the temperature data of asphalt pavement in several representative regions of China are compared with the determined medium temperature region, and it is proved that the research on the evolution of viscoelastic characteristics of asphalt pavement under the medium temperature condition has important practical significance.

Originality/value

The boundary of medium temperature zone of 90# and 70# base asphalt was determined, and the viscoelastic characteristic evolution of road asphalt under medium temperature state was studied deeply. Aiming at the limitation of intrinsic viscoelastic index, a comprehensive evaluation index IM-T which not only integrates the information of intrinsic viscoelastic index but also can accurately evaluate the evolution of temperature viscoelastic characteristics in road asphalt is proposed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2017

Hanxiang Xu, Shihui Guo, Junfeng Yao and Nadia Magnenat Thalmann

In the process of robot shell design, it is necessary to match the shape of the input 3D original character mesh model and robot endoskeleton, in order to make the input model fit…

Abstract

Purpose

In the process of robot shell design, it is necessary to match the shape of the input 3D original character mesh model and robot endoskeleton, in order to make the input model fit for robot and avoid collision. So, the purpose of this paper is to find an object of reference, which can be used for the process of shape matching.

Design/methodology/approach

In this work, the authors propose an interior bounded box (IBB) approach that derives from oriented bounding box (OBB). This kind of box is inside the closed mesh model. At the same time, it has maximum volume which is aligned with the object axis but is enclosed by all the mesh vertices. Based on the IBB of input mesh model and the OBB of robot endoskeleton, the authors can complete the process of shape matching. In this paper, the authors use an evolutionary algorithm, covariance matrix adaptation evolution strategy (CMA-ES), to approximate the IBB based on skeleton and symmetry of input character mesh model.

Findings

Based on the evolutionary algorithm CMA-ES, the optimal position and scale information of IBB can be found. The authors can obtain satisfactory IBB result after this optimization process. The output IBB has maximum volume and is enveloped by the input character mesh model as well.

Originality/value

To the best knowledge of the authors, the IBB is first proposed and used in the field of robot shell design. Taking advantage of the IBB, people can quickly obtain a shell model that fit for robot. At the same time, it can avoid collision between shell model and the robot endoskeleton.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 January 2024

Xu Li, Zeyu Xiao, Zhenguo Zhao, Junfeng Sun and Shiyuan Liu

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve…

Abstract

Purpose

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve its drainage function, improve the water stability and service life of the roadbed pavement and promote the application of semi-rigid permeable base layer materials in the construction of asphalt pavement in cold regions.

Design/methodology/approach

In this study, three semi-rigid base course materials were designed, the mechanical strength and drainage properties were tested and the effect and correlation of air voids on their performance indexes were analyzed.

Findings

It was found that increasing the cement content increased the strength but reduced the air voids and water permeability coefficient. The permeability performance of the sandless material was superior to the dense; the performance of the two sandless materials was basically the same when the cement content was 7%. Overall, the skeleton void (sand-containing) type gradation between the sandless and dense types is more suitable as permeable semi-rigid base material; its gradation is relatively continuous, with cement content? 4.5%, strength? 1.5 MPa, water permeability coefficient? 0.8 cm/s and voids of 18–20%.

Originality/value

The study of permeable semi-rigid base material with large air voids could help to solve the problems of water damage and freeze-thaw damage of the base layer of asphalt pavements in cold regions and ensure the comfort and durability of asphalt pavements while having good economic and social benefits.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 October 2018

Pei Wei, Zhengying Wei, Zhne Chen, Jun Du, Yuyang He and Junfeng Li

This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant…

Abstract

Purpose

This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant instability of the liquid track.

Design/methodology/approach

A three-dimensional model was proposed to predict local powder melting process. The model accounts for heat transfer, melting, solidification and evaporation in granular system at particle scale. The proposed model has been proved to be a good approach for the simulation of the laser melting process.

Findings

The results shows that the applied laser energy density has a significantly influence on the shape of the molten pool and the local thermal properties. The relative low or high input laser energy density has the main negative impact on the stability of the scan track. Decreasing the porosity of the powder bed lowers the heat dissipation in the downward direction, resulting in a shallower melt pool, whereas pushing results in improvement in liquid track quality.

Originality/value

The randomly packed powder bed is calculated using discrete element method. The powder particle information including particle size distribution and packing density is taken into account in placement of individual particles. The effect of volumetric shrinkage and evaporation is considered in numerical model.

Details

Rapid Prototyping Journal, vol. 25 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 25